Roll No. \square

B TECH

(SEM-I) THEORY EXAMINATION 2018-19

ENGINEERING CHEMISTRY

Time: 3 Hours
Total Marks: 100
Noter.AttempltSectiohfs equiaremissidgtatheahooselitably.

SECTIOAN

1. Attemqltquestiontsrief.

$$
2 \times 10=20
$$

a. Define meso compounds with example.
b. Why water is a liquid whereas $\mathrm{H}_{2} \mathrm{~S}$ is a gas?
c. Explain tacticity of polymers.
d. Explain why p-nitro phenol is more soluble than o-nitro phenol in water.
e. Arrange in increasing order of stability
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{-},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-}$
f. When is the value of Gross calorific value (GCV) equal to Net calorific value (NCV)?
g. Calculate the order and molecularity of the following reactions:
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$ (excess) $\rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
h. Explain why hardness of water is expressed in terms of terms of CaCO_{3} equivalents.
i. Write any two examples of redox titration.
j. Write down the structure of Aerrocene and Zeise salt.

SECTION B

2. Attempt any three of ihe following:
a. On the basis of molecular orbital theory explain why N_{2} is diamagnetic while O_{2} is paramagnetic.
b. Explain the stereochemistry of $\mathrm{SN}^{1} \& \mathrm{SN}^{2}$ reactions.
c. Describe the different conformation of n-butane with potential energy diagram.
d. Derive the equation for half life of second order reaction. For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
The rate is directly proportional to $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$. At $45^{\circ} \mathrm{C}, 90 \%$ of the $\mathrm{N}_{2} \mathrm{O}_{5}$ reacts in 3600 seconds. Find the value of the rate constant k .
e. Write the mechanism of any two of the following:
(i) Diels elder reaction.
(ii) Hoffmann rearrangement reaction.
(iii) Cannizaro's reaction.

SECTION C

3. Attempt any one part of the following:
(a) What is shielding and deschielding? Calculate the number of signal for following Molecules:
(i) Diethyl ether
(ii) Ethyl alcohol.
(b) i)What is hydrogen bonding? Differentiate between intra and intermolecular Hydrogen bonding with suitable examples.
ii) Describe the preparation, properties and application of any two of the PMMA and Bakelite Polymers.
4. Attempt any one part of the following: $10 \times 1=10$
(a) Compare Zeolite and Ion Exchange process of softening of water.
(b) Define Chemical shift. A gaseous hydrocarbon 'A' on passing through a quartz tube heated at $600^{\circ} \mathrm{C}$ gave a liquid compound ' B ' (Molecular weight: 78 amu). The later compound was found to undergo electrophilic substitution reactions. It gave the following physical data on analysis. The IR spectrum showed a characteristic absorption band at $3040 \mathrm{~cm}^{-1}$ and a UV absorption, due to $\pi-\pi *$ transition, at 204 nm ($\log _{\text {e }} 3.84$). The ' H^{1}-NMR spectrum displayed a downfield singlet (6 H) at 7.3τ. Identify the compound ' A ' and ' B ' and give your reasoning.
5. Attempt any one part of the following:
$10 \times 1=10$
(a) Define the terms: Phase, Component and Degree of freedom and apply phase rule to water system.
(b) What are biodegradable polbmers? Discuss them in detail with applications.
6. Attempt any one part of the following: $10 \times 1=10$
(a) Write the mechinism of electrochemical corrosion. Explain why a pure metal rod half immersed vefically in water starts corroding at the bottom.
(b) What is activation energy? Calculate the energy of activation for a reaction whose rate constant is tripled by $10^{\circ} \mathrm{C}$ rise in temperature in the vicinity of $27^{\circ} \mathrm{C}$.
7. Attempt any one part of the following:
$10 \times 1=10$
(a) Explain band theory of metallic bonding. Calculate the bond order and predict the magnetic behavior of $\mathrm{NO}, \mathrm{CO}^{+} \mathrm{CO}^{-}$.
(b) Derive rate law equation for a first order reaction.A solution of $\mathrm{H} \quad{ }_{2} \mathrm{O}_{2}$ when titrated against KMnO_{4} solution at different time intervals gave the following results:
Time (min) $\quad 0 \quad 10 \quad 20$
Vol of KMnO_{4} used
$23.8 \mathrm{ml} \quad 14.7 \mathrm{ml}$
9.1 ml
for $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$
Show that the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is a first order reaction.
